Software Defined 5G and 6G Networks: a Survey
The current mobile communications could not satisfy the explosive data requirement of users. This paper reviews the frontier technology of software definition networks (SDN) of 5G and 6G, including system architecture, resource management, mobility management, interference management, challenges, and open issues. First of all, the system architectures of 5G and 6G mobile networks are introduced based on SDN technologies. Then typical SDN-5G/6G application scenarios and key issues are discussed. We also focus on mobility management approaches in mobile networks. Besides, three types of mobility management mechanism in software defined 5G/6G are described and compared. We then summarize the current interference management techniques in wireless cellular networks. Next, we provide a brief survey of interference management method in SDN-5G/6G. Additionally, considering the challenges, we discuss mm-Wave spectrum, un-availability of popular channel model, massive MIMO, low latency and QoE, energy efficiency, scalability, mobility and routing, inter operability, standardization and security for software defined 5G/6G networks.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve
Similar content being viewed by others
A Survey on 5G Architecture and Security Scopes in SDN and NFV
Chapter © 2022
The Benefits of SDN Integration on 5G Mobile Network
Chapter © 2020
A Survey on Software-Defined Networking-Based 5G Mobile Core Architectures
Article 19 September 2022
Explore related subjects
References
- Futuristic mobile technologies forese, IMT for 2020 and beyond. http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Pages/default.aspx
- IMT-2020, 5G, promotion association. http://www.imt-2020.org.cn/zh
- Zhang H, Liu N, Chu X, Long K, Aghvami A, Leung V (2017) Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun Mag 55(8):138–145 ArticleGoogle Scholar
- Zhang H, Dong Y, Cheng J, Hossain Md J, Leung VCM (2016) Fronthauling for 5G LTE-u ultra dense cloud small cell networks. IEEE Wireless Commun 23(6):48–53 ArticleGoogle Scholar
- Software-defined networking: the new norm for networks (2012) ONF White Paper
- Zhou H et al (2018) SDN-RDCD: a real-time and reliable method for detecting compromised SDN devices. IEEE/ACM Trans Netw 26(5):2048–2061 ArticleGoogle Scholar
- Zhou H, Wu C, Cheng Q, Liu Q (2017) SDN-LIRU: a lossless and seamless method for SDN inter-domain route updates. IEEE/ACM Trans Netw 25(4):2473–2483 ArticleGoogle Scholar
- Huang X, Li F, Wei T, Cao K, Cong P, Hu S Queueing theoretic approach for performance-aware modeling of sustainable SDN control planes. IEEE Trans Sustainable Computing
- Gudipati A, Perry D, Li L, Katti S SoftRAN: software defined radio access network. ACM SIGCOMM HotSDN Workshop, New York, pp 25–30
- Ali-Ahmad H, Cicconetti C, De La Oliva A (2013) CROWD: an SDN approach for densenets. In: 2013 Second European workshop on software defined networks (EWSDN), pp 25-31
- Du J, Jiang C, et al. (2018) Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks. IEEE J Select Areas Commun 36(10):2202–2217 ArticleGoogle Scholar
- Zhang H, Liu H, Cheng J, Leung V (2017) Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell Networks. IEEE Trans Commun
- Park S, Song H Cooperative base station caching and X2 link traffic offloading system for video streaming over SDN-enabled 5G networks. IEEE Trans Mobile Computing
- Yilmaz H, Tugcu T, Alagoz F, Bayhan S (2013) Radio environment map as enabler for practical cognitive radio networks. IEEE Commun Mag 51(12):162–169 ArticleGoogle Scholar
- van de Beek J, Cai T, Grimoud S, Sayrac B, Mahonen P, Nasreddine J, Riihijarvi J (2012) How a layered rem architecture brings cognition to today’s mobile networks. IEEE Wireless Commun 19(4):17–24. https://doi.org/10.1109/MWC.2012.6272419
- Perez-Romero J, Zalonis A, Boukhatem L, Kliks A, Koutlia K, Dimitriou N, Kurda R (2015) On the use of radio environment maps for interference management in heterogeneous networks. IEEE Commun Mag 53(8):184–191 ArticleGoogle Scholar
- IMT-2020 (5G) Promoting Group (2014) 5G Vision and Demand White Paper
- IMT-2020 (5G) Promotion Squad. 5G vision and Demand White Paper. http://www.imt-2020.cn/zh/documents/listByQuery currentPage= 1&content
- TU-R M. [IMT.Vision] (2013) IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond. ITU working document 5d/TEMP/224-e
- ICT-317669 METIS Project (2013) Scenarios requirements and KPIs for 5G mobile and wireless system
- Nokia Siemens Networks (2011) 2020: beyond 4G radio evolution for the gigabit experience. White Paper
- Ericsson. (2011) More than 50 billion connected devices. White Paper
- Fettweis G, Alamouti S (2014) 5G: personal mobile internet beyond what cellular did to telephony. IEEE Commun Mag 52(2):140–145 ArticleGoogle Scholar
- Osseiran A, Boccardi F, Braun V et al (2014) Scenario for 5G mobile and wireless communication: the vision of the METIS project. IEEE Commun Mag 52(5):26–35 ArticleGoogle Scholar
- Zhang Y et al (2018) Software-defined and fog computing based next generation vehicular networks. IEEE Commun Mag
- Du J, Gelenbe E, Jiang C, Zhang H, Ren Y (2017) Contract design for traffic offloading and resource allocation in SDWN-based ultra-dense networks. IEEE J Select Areas Commun 35(11):2457–2467 ArticleGoogle Scholar
- Ameigeiras P, Ramos-Munoz JJ, Schumacher L, Garzon JP, Ortiz JN, Lopez JM (2015) Link-level access cloud architecture design based on SDN for 5G networks. IEEE Netw 29(2):24–31 ArticleGoogle Scholar
- Ameigeiras P, Ramos-Munoz JJ, Schumacher L, Garzon JP, Ortiz JN, Lopez JM (2018) Joint fair resource allocation of D2D communication underlaying downlink cellular system with imperfect CSI. IEEE Access
- Stanford University. Clean slate program [EB/OL]. [2015-07-21]. http://cleanslate.stanford.edu
- Mckeown N (2009) Software defined networking, vol 17
- Open Networking Fundation (2012) Software-defined networking: the new norm for networks [M/OL]//ONF White Paper. [2015-07-12]. https://www.Opennetworking.org/
- Benardos CJ, DelaOliva A, Serrano P, Banchs A, Contreras L, Jin H, Zuniga JC (2014) An architecture for software defined wireless networking. IEEE Wireless Commun 21(3):52–61 ArticleGoogle Scholar
- Zhang H, Qiu Y, Long K, Karagiannidis GK, Wang X, Nallanathan A (2018) Resource allocation in NOMA based fog radio access networks. IEEE Wireless Commun
- Bolla R, Bruschi R, Lombardo C, Podda F (2014) Openflow in the small: a flexible and efficient network acceleration framework for multi-core systems. IEEE Trans Netw Serv Manag 11(3):390–404 ArticleGoogle Scholar
- Chaudet C, Haddad Y (2013) Wireless software defined networks: challenges and opportunities. In: IEEE international conference on microwaves, communications, antennas and electronics systems (COMCAS), pp 1–5
- Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tuts 17(1):358–380 ArticleGoogle Scholar
- ONF (2012) Software-defined networking: the new norm for networks
- Yang FY, Zhang JM, Xie WL, Wang MHN (2015) Analysis of 5G cellular network architecture
- Zhang H, Wang B, Jiang C, Long K, Nallanathan A, Leung VCM, Poor HV (2018) Energy efficient dynamic resource optimization in NOMA system. IEEE Trans Wireless Commun
- Zhang H, Du J, Cheng J, Long K, Leung VCM (2018) Incomplete CSI based resource optimization in SWIPT enabled heterogeneous networks: a non-cooperative game theoretic approach. IEEE Trans Wirel Commun 17(3):1882–1892 ArticleGoogle Scholar
- Lei K, Li Y, et al. (2018) NDN producer mobility management based on echo state network: a lightweight machine learning approach. In: Proceedings of the 24th international conference on parallel and distributed systems (ICPADS), Singapore
- Zhang X, Gu W et al (2019) Hybrid Communication path orchestration for 5G heterogeneous Ultra-Dense networks. IEEE Netw
- Zhang H, Nie Y, Cheng J, Leung VCM, Nallanathan A (2017) Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Trans Wirel Commun 16(2):730–743 ArticleGoogle Scholar
- Zhang H, Fang F, Cheng J, Long K, Wang W, Leung VCM (2018) Energy-efficient resource allocation in NOMA heterogeneous networks. IEEE Wireless Commun
- Trvisonno R, Guerzoni R, Vaishnavi I, Soldani D (2014) Sdn-based 5g mobile networks: architecture, functions, procedures and backward compatibility. Transactions on Emerging Telecommunications Technologies
- Guerzoni R, Trivisonno R, Vaishnavi I, Despotovic Z, Hecker A, Beker S, Soldani D (2014) A novel approach to virtual networks embedding for sdn management and orchestration. In: 2014 IEEE network operations and management symposium (NOMS), pp 1–7
- Zuo L (2017) Bandwidth preemption for data transfer request with higher priority. In: 2017 IEEE 36th international performance computing and communications conference (IPCCC), San Diego, CA, pp 1–2
- ITU-R M. [IMT.Vision] (2013) IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond. ITU working document 5d/TEMP/224-e
- Reale R, da Neto W, Martins J (2012) Routing in ds-te networks with an opportunistic bandwidth allocation model. In: 2012 IEEE symposium on computers and communications (ISCC), pp 88–93
- Xie W, Zhu J, Huang C, Luo M, Chou W (2014) Network virtualization with dynamic resource pooling and trading mechanism. In: 2014 IEEE global communication conference (GLOBECOM), pp 1829–1835
- Mijumbi R, Gorricho J-L, Serrat J, Claeys M, De Turck F, Latre S (2014) Design and evaluation of learning algorithms for dynamic resource management in virtual networks. In: 2014 IEEE network operations and management symposium (NOMS), pp 1–9
- Kareche S, Ductor S, Guessoum Z, Mezghiche M (2014) A new robust heuristic for assigning substrate network resources to virtual networks. In: 2014 International conference on advanced networking distributed systems and applications, Bejaia, pp 47–52
- Trinh T, Esaki H, Aswakul C (2011) Quality of service using careful overbooking for optimal virtual network resource allocation. In: 8th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), pp 296–299
- Mijumbi R, Serrat J, Rubio-Loyola J, Bouten N, De Turck F, Latre S (2014) Dynamic resource management in sdn-based virtualized networks. In: 2014 10th international conference on network and service management (CNSM), pp 412–417
- Wang J, Wang Y, Dai X, Bensaou B (2014) Sdn-based multi-class qos guaranteed inter-data center traffic management. In: 2014 IEEE 3rd international conference on cloud networking (CloudNet), pp 401–406
- Kliks A, Goratti L, Chen T (2016) Revisiting a cognitive tool for virtualized 5G networks. In: 2016 23rd international conference on telecommunications (ICT)
- Liang C, Yu FR (2015) Wireless network virtualization: a survey, some research issues and challenges. IEEE Commun Surv Tuts 17(1):358–380. https://doi.org/10.1109/COMST.2014.2352118ArticleGoogle Scholar
- Suarez-Rodriguez C, Jayawickrama A, Bader F (2018) REM-Based handover algorithm for next-generation multi-tier cellular networks. In: IEEE Wireless Communication and Networking Conference (WCNC), pp 1–6
- Kryszkiewicz P, Kliks A, Kulacz L (2018) Context-based spectrum sharing in 5G wireless networks based on Radio Environment Maps, Wireless Commun and Mobile Computing
- Mahapatra R (2019) Radio environment map based radio resource management in heterogeneous wireless network. In: Proceedings of the 2nd international conference on communication, computing and networking, pp 283–292
- Liyanage M, Gurtov A, Ylianttila M (2015) Software defined mobile networks (SDMN): Beyond LTE Network Architecture. Wiley, New York
- Costa-Requena J, Llorente Santos J, Ferrer Guasch V, Ahokas K, Premsankar G, Luukkainen S, Ahmad I, Liyanage M, Ylianttila M, Lopez Perez O, Uriarte Itzazelaia M, Montes de Oca E (2015) SDN and NFV integration in generalized mobile network architecture. 2015 European Conf. on Networks and Communications (EuCNC), pp 154–158
- Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tuts PP(99):1–1 Google Scholar
- He H, Li X, Wang X, Feng Z, et al. (2017) An adaptive handover trigger strategy for 5G C/U plane split heterogeneous network. Proceedings of the 14th International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2017), Orlando, Florida, pp 22–25
- Zhang H, Qiu Y, Chu X, Long K, Leung VCM (2018) “Fog radio access networks: Mobility management, interference mitigation and resource optimization, IEEE Wireless Commun.
- Kukliski S, Li YH, Dinh KT (2014) Handover management in SDN-based mobile networks. Proceedings of 6th IEEE Int Workshop on Management of Emerging Networks and Services
- 3GPP (2011) Evolved general packet radio service (GPRS) tunnelling protocol for control plane (GTPv2-c), 3rd Generation Partnership Project (3GPP), TS 29.274
- Zeng H, Liu X, Megeed S (2019) Digital signal processing for High-Speed Fiber-Wireless convergence. J Opt Commun Netw 11(1):A11–A19 ArticleGoogle Scholar
- Hata M, Soylu M, Izumi S (2018) SDN Based end-to-end inter-domain routing mechanism for mobility management and its evaluation. Sensors 18(12):4228 ArticleGoogle Scholar
- Wan R, Da B, Li R (2018) Identity based security for authentication and mobility in future ID oriented networks. 2018 Int. Conf. on IEEE Information Networking (ICOIN), pp 402–407
- Contreras L, Cominardi L, Qian H, Bernardos C (2016) Software-defined mobility management: Architecture proposal and future directions. Mobile Netw Appl 21(2):226–236 ArticleGoogle Scholar
- Varadharajan V, Karmakar K, Tupakula U (2019) A policy-based security architecture for software-defined networks. IEEE Trans Info Forens Secur 14(4):897–912 ArticleGoogle Scholar
- Quer G, Aktas T, Librino F (2019) A Wireless Vehicle-based mobile network infrastructure designed for smarter cities. Ad Hoc Netw Ad Hoc Netw 85:160–169 ArticleGoogle Scholar
- Hampel G, Steiner M, Bu T (2013) Applying software-defined networking to the telecom domain. Proceedings of 16th IEEE Global Internet Symposium in conjunction with IEEE Infocom, Turin, Italy
- Said SBH, Sama MR, Guillouard K, Suciu L, Simon G, Lagrange X, Bonnin J-M (2013) New control plane in 3GPP LTE/EPC architecture for on-demand connectivity Service. Proceedings of 2nd IEEE Int. Conf on Cloud Networking (CloudNet)
- Pentikousis K, Wang Y, Hu WH (2013) Mobileflow: Toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53 ArticleGoogle Scholar
- Jeon S, Guimaraes C, Aguiar RL (2014) SDN-based mobile networking for cellular operators. Proceedings of 9th ACM workshop on Mobility in the evolving internet architecture (MobiArch)
- Wang Y, Bi J (2014) A Solution for IP mobility support in software defined networks. Proceedings of 23rd International Conference on Computer Communication and Networks (ICCCN)
- Raza SM, Kim DS, Choo H (2014) Leveraging PMIPv6 with SDN. Proceedings of 8th International Conference on Ubiquitous Information Management and Communication (ICUIMC)
- Kim S-M, Choi H-Y, Park P-W, Min S-G, Han Y-H (2014) OpenFlow-based proxy mobile IPv6 over Software Defined Network (SDN). Proceedings of IEEE Consumer communications and networking conference (CCNC)
- Ali-Ahmad H, Cicconetti C, Oliva A, Draxler M, Gupta R, Mancuso V, Roullet L, Sciancalepore V (2013) CROWD: An Sdn approach for denseNets, 2013 2nd European Workshop on Software Defined Networks (EWSDN)
- Sheng M, Sun H, Wang X, Zhang Y, Quek TS, Liu J, Li J (2015) On-demand scheduling: achieving QoS differentiation for D2D communications. IEEE Commun Mag 53(7):162–170 ArticleGoogle Scholar
- Wang MM, Ji T (2010) Dynamic resource allocation for interference management in orthogonal frequency division multipleaccess cellular communications. IET Commun 4(6):675–682 ArticleGoogle Scholar
- Zhang J, Chen RH, Andrews J, Ghosh A, Heath RW (2009) Networked MIMO with clustered linear precoding. IEEE Trans Wirel Commun 8(4):1910–1921 ArticleGoogle Scholar
- Miridakis N, Vergados DD (2013) A survey on the successive interference cancellation performance for the single antenna and multiple antenna OFDM systems. IEEE Commun Surv Tuts 15(1):312–335 ArticleGoogle Scholar
- Lee J, Kim Y, Lee H, Ng BL, Mazzarese D, Liu J, Xiao WM, Zhou YX (2012) Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Commun Mag 50(11):44–50 ArticleGoogle Scholar
- Zhang R, Cui SG (2010) Interference management with MISO beamforming. IEEE Trans Signal Process 58(10):5450–5458 ArticleMathSciNetMATHGoogle Scholar
- Zhao GD, Yang CY, Li GY, Sun GL (2011) Fractional frequency donation for cognitive interference management among femtocells. IEEE Global Telecommun. Conf. IEEE Press, Houston, pp 1–6
- Attar A, Krishnamurthy V, Gharehshiran ON (2011) Interference management using cognitive base-station for LTE. IEEE Commun Mag 49(8):152–159 ArticleGoogle Scholar
- Bosisio R, Spagnolini U (2008) Interference coordination vs. interference randomization in multi cell 3GPP LTE systems. IEEE Wireless Communications and Networking Conference. IEEE Press, Las Vegas, pp 824–829
- 3GPP. Further advancements for E-UTRA physical layer aspects: TR-36.814 [R/OL]. [2016-05-24]. http://www.3gpp.org/ftp/Specs/html-info/36814.htm
- 3GPP. Requirements for support of radio resource management: TR-36.133 [R/OL]. [2016-05-24]. http://www.3gpp.org/ftp/Specs/htmlinfo/36133.htm
- Zhang H, Liu N, Long K, Cheng J, Leung VCM, Hanzo L (2018) Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks. IEEE J Select Areas Commun
- Hamza AS, Khalifa SS, Hamza HS, Elsayed K (2013) A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Commun Surv Tuts 15(4):1642–1670 ArticleGoogle Scholar
- Yang CG, Li J, Anpalagan A, Guizani M (2016) Joint power coordination for spectral-and-energy efficiency in denser small cell networks: a bargaining game-theoretic perspective. IEEE Trans Wirel Commun 15 (2):1364–1376 ArticleGoogle Scholar
- Cadambe VR, Jafar SA (2008) Interference alignment and degrees of freedom of the K-user interference channel. IEEE Trans Inform Theory 54(8):3425–3441 ArticleMathSciNetMATHGoogle Scholar
- Katti S, Rahul H, Hu WJ, Katabi D, Medard M, Crowcroft J (2010) Xors in the air practical wireless network coding. IEEE/ACM Trans Netw 16(3):497–510 ArticleGoogle Scholar
- Lee N, Lim JB, Chun J (2010) Degrees of freedom of the MIMO Y channel: Signal space alignment for network coding. IEEE Trans Inform Theory 56(7):3332–3342 ArticleMathSciNetMATHGoogle Scholar
- Ma X, Sheng M, Zhang Y (2012) Green communications with network cooperation: a concurrent transmission approach. IEEE Commun Lett 16(12):1952–1955 ArticleGoogle Scholar
- Sawahashi M, Kishiyama Y, Morimoto A, Nishikawa D, Tanno M (2010) Coordinated multipoint transmission/reception techniques for LTE-advanced. IEEE Wirel Commun Mag 17(3):26–34 ArticleGoogle Scholar
- Li JD, Liu L, Sheng M, Xu C (2016) Intelligent interference management in 5G wireless networks. https://doi.org/10.11959/j.issn.10
- Gebremariam AA, Gorattiy L, Riggioy R, Siracusay D, Rasheedy T, Granelli F (2015) A framework for interference control in software-defined mobile radio networks. IEEE 12th Consumer Communications and Networking Conference(CCNC), pp 892–897
- Kim H, Feamster N (2013) Improving network management with software defined networking. IEEE Commun Mag, 114–119
- Yap KK, Sherwood R, Kobayashi M, Huang TY, Chan M, Handigol N, McKeown N, Parulkar G (2010) Blueprint for introducing innovation into wireless mobile networks. VISA 2010, New Delhi, India, pp 1–8
- Wang B, et al. (2017) Green resource allocation in intelligent software defined NOMA networks. 2nd International Conference on Machine Learning and Intelligent Communications, MLICOM 2017, Weihai, China
- Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5G be?. IEEE J Sel Areas Commun 32(6):1065–1082 ArticleGoogle Scholar
- Adhikari P (2008) Understanding millimeter wave wireless communication. white paper Loea Corporation
- Zhang H, Huang S, Jiang C, Long K, Leung VCM, Poor HV (2017) Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE J Sel Areas Commun 35(9):1936–1947 ArticleGoogle Scholar
- Rappaport TS, Sun S, Mayzus R, Zhao H, Azar Y, Wang K, Wong GN, Schulz JK, Samimi M, Gutierrez F (2013) Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access 1:335–345 ArticleGoogle Scholar
- Rajagopal S, Abu-Surra S, Pi Z, Khan F (2011) Antenna array design for multi-gbps mmwave mobile broadband communication. Global Telecommun Conf (Globecom), pp 1–6
- Rappaport TS, Gutierrez F, Ben-Dor E, Murdock JN, Qiao Y, Tamir JI (2013) Broadband millimeter wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications. IEEE Trans Antennas Propagat 61(4):1850–1859 ArticleGoogle Scholar
- GSMA Intelligence (2014) Understanding 5G: Perspectives on future technological advancements in mobile. white paper
- Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tuts 16(1):414–454 ArticleGoogle Scholar
- Hampel G, Steiner M, Bu T (2013) Applying software-defined networking to the telecom domain. Proceedings of IEEE INFOCOM’13, pp 133–138
- Basta A, Kellerer W, Hoffmann M, Hoffmann K, Schmidt ED (2013) A virtual sdn-enabled lte epc architecture: A case study for S-/P-gateways functions. Proceedings of SDN3FNS’13
- Pentikousis K, Wang Y, Hu WH (Jul. 2013) Mobileflow: Toward software-defined mobile networks. IEEE Commun Mag 51(7):44–53
- Yazc V, Kozat UC, Sunay MO (2014) A new control plane for 5G network architecture with a case study on unified handoff, mobility, and routing management. IEEE Commun Mag 52(11):76–85 ArticleGoogle Scholar
- Jin X, Li L, Vanbever L, Rexford J (2013) Softcell: Scalable and flexible cellular core network architecture. Proceedings of ACM CoNEXT’13, pp 163–174
- Linthicum DS (2016) Software-defined networks meet cloud computing. IEEE Cloud Comput 3(3):8–10 ArticleGoogle Scholar
- Liu J, Sheng M, Li J (2018) Limitation of SDMA in ultra-dense small cell networks. IEEE Wirel Commun Lett 7(4):506–509 ArticleGoogle Scholar
- Khan S, Gani A, Abdul Wahab AW, Iqbal S, Abdelaziz A, Mahdi OA, Abdallaahmed AI, Shiraz M, Al-Mayouf YRB, Khan Z, Ko K, Khan MK, Chang V (2016) Towards an applicability of current network forensics for cloud networks: A sWOT analysis. IEEE Access 4:9800–9820 ArticleGoogle Scholar
- Nguyen V, Brunstrom A, Grinnemo K, Taheri J (2017) SDN/NFV-Based mobile packet core network architectures: A survey. IEEE Commun Surv Tuts 19(3):1567–1602 ArticleGoogle Scholar
- Chen T, Zhang H, Chen XF, Tirkkonen O (2014) Softmobile: Control evolution for future heterogeneous mobile networks. IEEE Wirel Commun Mag 21(6):70–78 ArticleGoogle Scholar
- Sama M, Contreras L, Kaippallimalil J, Akiyoshi I, Qian H, Ni H (2015) Software-defined control of the virtualized mobile packet core. IEEE Commun Mag 53:2 ArticleGoogle Scholar
- Arslan M, Sundaresan K, Rangarajan S (2015) Software-defined networking in cellular radio access networks: potential and challenges. IEEE Commun Mag 53(1):150–156 ArticleGoogle Scholar
- kreutz D, Ramos FMV, Verissimo P, Rothenberg CE, Azodolmolky A, Uhlig S (2015) Software-defined networking: a comprehensive survey. Proc IEEE 103:1 ArticleGoogle Scholar
- Zhang H, Yang N, Long K, Pan M, Karagiannidis GK, Leung VCM (2017) Secure communications in NOMA system: Subcarrier assignment and power allocation. IEEE J Select Areas Commun
- Liu Q, Li P, Zhao W, Cai W, Yu S, Leung VCM (2018) A survey on security threats and defensive techniques of machine learning: a data driven view. IEEE Access 6:12103–12117 ArticleGoogle Scholar
Author information
Authors and Affiliations
- Beijing University of Technology, Beijing, 100124, China Qingyue Long
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China Yanliang Chen
- Beijing Engineering and Technology Research Center for Convergence Networks and Ubiquitous Services, University of Science and Technology Beijing, Beijing, 100083, China Haijun Zhang
- Provincial Key Lab of Information Coding and Transmission, Southwest Jiaotong University, Chengdu, 610031, China Xianfu Lei
- Qingyue Long